Directive Effects in Benzylic Hydrogen Atom Abstraction. Part III.¹ Chlorination of Nuclear-substituted Toluenes, Diphenylmethanes, and Ethylbenzenes

By Kheng H. Lee * and T. O. Teo, Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia

The relative reactivities of nuclear-substituted toluenes, diphenylmethanes, and ethylbenzenes towards the benzenechlorine atom π complex at 40° have been determined using sulphuryl chloride and t-butyl hypochlorite in benzene as reagents. The results show ρ values of -0.83, -0.65, and -0.67 for the former reagent and -0.81, -0.66. and -0.65 for the latter, all well correlated by the Hammett equation. Similar deuterium isotope effects $k_{\rm H}/k_{\rm D}$ of $2 \cdot 4$ for $[\alpha, \alpha^{-2}H_2]$ toluene, and of $1 \cdot 8$ for $[\alpha, \alpha^{-2}H_2]$ diphenylmethane for the two reagents also provide strong evidence that the benzene-chlorine atom π complex is the principal hydrogen-abstracting species for benzylic chlorination with these reagents in benzene solution.

SULPHURYL CHLORIDE is a versatile chlorinating agent which has been shown 1-6 to vary in its selectivity in chlorination depending on the nature of the solvent. Walling and Miller⁷ reported the same deuterium isotope effect when $[\alpha-2H]$ toluene is photochlorinated or chlorinated with SO_2Cl_2 at 70° in the absence of a solvent. This result has been attributed ⁵ to hydrogen abstraction by the toluene-chlorine atom π complex. More recent evidence for π complexing of atomic chlorine by alkylbenzenes has been presented by Bruylants et al.⁸ Although earlier studies on benzylic chlorination with t-butyl hypochlorite have implied that hydrogen abstraction is principally by the t-butoxyl radical, recent work by Sakurai and Hosomi⁹ and by Walling and

¹ Part II, K. H. Lee, Tetrahedron, 1969, 25, 4363.

² K. H. Lee, Tetrahedron, 1970, 26, 2041.

³ E. S. Huyser, Synthesis, 1970, 7. ⁴ G. A. Russell and H. C. Brown, J. Amer. Chem. Soc., 1955, 77. 4031.

⁵ G. A. Russell, J. Amer. Chem. Soc., 1958, **80**, 5002. ⁶ K. H. Lee and T. O. Teo, Chem. Comm., 1970, 860.

⁷ C. Walling and B. Miller, J. Amer. Chem. Soc., 1957, 79,

4181. ⁸ J. L. Corbiau and A. Bruylants, Bull. Soc. chim. belges,

1970, **79**, (a) 211; (b) 451. ⁹ H. Sakurai and A. Hosomi, J. Amer. Chem. Soc., 1967, **89**, 458.

McGuiness¹⁰ indicates convincingly the implication of chlorine-atom chains to a large extent with this reagent.

In extending our investigation on benzylic halogenation,^{1,11} we have studied the substituent effects in the chlorination of toluenes, diphenylmethanes, and ethylbenzenes with sulphuryl chloride and with t-butyl hypochlorite in benzene in view of the fact that discrepancies have been found by various workers 9,10,12-14 who treated toluene with Bu^tOCl and Bu^tO· radicals. Previous investigations 11,15 on the N-bromosuccinimide bromination of XC₆H₄CH₂Ph using different analytical methods both gave a better Hammett correlation with σ than with σ^+ constants. This bromination has now been reinvestigated under homogeneous conditions using a different approach.

¹⁰ C. Walling and J. A. McGuiness, J. Amer. Chem. Soc., 1969, **91**. 2053.

¹¹ T. P. Low and K. H. Lee, J. Chem. Soc. (B), 1970, 535. ¹² C. Walling and B. B. Jacknow, J. Amer. Chem. Soc., 1960, 82, 6113.

¹³ (a) R. D. Gilliom and B. F. Ward, J. Amer. Chem. Soc., 1965, **87**, 3944; (b) R. D. Gilliom and J. R. Howles, Canad. J. Chem., 1968, **46**, 2752.

14 B. R. Kennedy and K. U. Ingold, Canad. J. Chem., 1966,

44, 2381. ¹⁵ S. S. Friedrich, L. J. Andrews, and R. M. Keefer, J. Org.

RESULTS AND DISCUSSION

Toluene System.—The reactivity of p-xylene relative to cyclohexane towards SO₂Cl₂ in benzene has been shown⁶ to be independent of its concentration up to 2.4M. Thus in the competitive chlorination of XC_8H_4Me vs. PhMe with SO_2Cl_2 and $Bu^{t}OCl$ the total concentration of the hydrocarbons used was kept at 0.8M. The results are in Table 1, where the reactivity of p-Bu^t-

TABLE 1 Chlorination ^a of XC₆H₄Me in benzene at 40°

		k/k_0		
x	SO ₂ Cl ₂	ButOCl		
<i>p</i> -Me	1.51 + 0.04 b	1.51 + 0.01 »		
p-Bu ^t	$1.39 \stackrel{\frown}{\pm} 0.01$ ($1.39 \stackrel{\frown}{\pm} 0.01$ (
m-Me	$1\cdot 14 \stackrel{-}{\pm} 0\cdot 01$ ፆ	1·14 ± 0·04 ▷		
Н	1.00	1.00		
<i>p</i> -F	0.94 ± 0.01	0.94 ± 0.01		
m-CH ₂ Cl	0.84 ± 0.01 d	0.86 ± 0.02 a		
p-CH ₂ Cl	0.72 ± 0.01 d	0.73 ± 0.01 a		
p-C1	0.69 ± 0.01	0.69 ± 0.01		
m-F	0.51 ± 0.01	0.53 ± 0.01		
m-Cl	0.50 ± 0.01	0.51 ± 0.01		
$\log (k/k_o)$	$-0.83\sigma\pm0.02$	$-0.81\sigma \pm 0.02$		
y	0-994	0.995		
$\log (k/k_{o})$	$-0.70\sigma^+\pm0.09$	$-0.69a^+\pm0.08$		
Ŷ	0.984	0.983		
$k_{\rm H}/k_{\rm D}$ (PhCHD ₂)	2.3	$2 \cdot 3$		

• Average of 3 experiments. • Statistically corrected. • From values measured against *p*-xylene. • Not included in the correlation by the Hammett equation.

 $C_{6}H_{4}Me$ was measured against *p*-xylene. Application of the Hammett equation gave a ρ value of $-0.83 \pm$ $0.02 (r \ 0.994)$ for SO₂Cl₂ and $-0.81 \pm 0.02 (r \ 0.995)$ for Bu^tOCl, both well correlated by the σ constants of McDaniel and Brown.¹⁶ The p values are more negative than the value of -0.56 previously reported¹ for $SO_{2}Cl_{2}$ in CCl_{4} also at 40° .

The implication of chlorine-atom chains in benzylic chlorination with Bu^tOCl was first pointed out by Sakurai and Hosomi⁹ who reported a ρ value of -0.41(Freon-113) at 45° for t-butoxyl radicals from di-tbutyl peroxalate where competing chlorine atoms were absent. This is significantly different from the p values of -0.82 and -0.76 (PhH) at 40° obtained by Walling and Jacknow¹² and by Gilliom and Howles,^{13d} respectively, with Bu^tOCl. Subsequently, Walling and McGuiness¹⁰ demonstrated the serious implication of chlorine-atom chains in benzylic chlorination with Bu^tOCl.

The kinetic isotope effect, $k_{\rm H}/k_{\rm D}$, for $[\alpha, \alpha^{-2}H_2]$ toluene is 2.3 for SO_2Cl_2 and 2.5 for Bu^tOCl in benzene at 40°. These values are in good agreement with the value ⁷ of 2.1 at 70° for photochlorination as well as sulphuryl chloride chlorination of $[\alpha^{-2}H]$ toluene in the absence of a solvent, and with the value of 2.4 at 40° for the chlorination of C₆H₅CD₃ with t-butyl hypochlorite.¹⁴ Russell⁵ has interpreted the identical kinetic isotope effect re-

¹⁶ D. H. McDaniel and H. C. Brown, J. Org. Chem., 1958, 23,

420. ¹⁷ J. Hradil and V. Chvalovsky, Coll. Czech. Chem. Comm., 1968, 23, 2029.

ported by Walling and Miller ⁷ to be due primarily to hydrogen abstraction by the toluene-chlorine atom π complex. In contrast the kinetic isotope effect reported 10 for the ButO. radical with C₆H₅CD₃ and $C_{6}H_{5}Me$ at 40° is substantially larger, 5.0-5.5, determined from the t-butyl alcohol : acetone ratios.

The photochlorination of substituted toluenes ¹⁷ shows that in benzene the ρ value is significantly more negative than that found for the uncomplexed chlorine atom determined in CCl₄. Studies ¹⁸ on hydrogen abstraction from aliphatic compounds indicate that the uncomplexed chlorine atom ($\rho^* - 0.85$) is more selective than the t-butoxyl radical ($\rho^* - 0.69$) at 40°. The ρ value of -0.81 for treatment of the toluene system with Bu^tOCl is in good agreement with the values previously reported 10,13 and also with the value of -0.76 at 70° found for photochlorination 7 in the absence of a solvent. In view of the above discussion, the previous conclusions ¹²⁻¹⁴ that the t-butoxyl radical is the principal hydrogen-abstracting species in the chlorination of the toluene system with Bu^tOCl must now be subject to serious reservations.

Diphenylmethane System.—The relative reactivity of $XC_6H_4CH_2Ph$ towards SO_2Cl_2 and Bu^tOCl in benzene at 40° was measured against p-xylene. The results are in Tables 2 and 3. The competitive chlorination of

TABLE 2

Chlorination of XC₆H₄CH₂Ph with sulphuryl chloride

	[XC,H,CH,Ph]/	[p-Xylene]/	[Total	Material	
Subst.	mmol	mmol	α-Cl]/	balance	
x	initial/final	initial/final	mmol	(%)	k/k_{xylene}
⊅-Bu⁵	6·03/4·83(4·85) •	6.05/4.88	2.15	98	1.03
p-Bu ^t	6.00/4.65(4.71)	6.00/4.64			0.99
∕p-But	6.01/4.98(5.05)	6.03/5.00	$2 \cdot 10$	100	1.00
∕p-Ph	6.02/(4.72)	6·00/ 4·3 6	$2 \cdot 86$	99	0.76
∕p-Ph	6·02/(4·77)	6·00/4·53	2.80	101	0.82
⊅-Ph	6·02/(4·90)	6.03/4.64	2.55	100	0.78
н	10.01/7.50(7.40)	10-00/6-80	5.30	98	0.74
н	10.00/7.28(7.35)	10.02/6.54	5.58	97	0.74
н	10.00/7.28	10.02/6.54			0.74
<i>p</i> -F	6.03/4.32	5.97/3.77			0.72
p-F	6.02/4.36	6.02/3.82	3.22	95	0.71
<i>p</i> -F	6·04/4·41	6.01/3.82			0.68
₽-Cl	6.04/4.66	5.98/3.67			0.53
p-Cl	6.00/4.55	6.05/3.69			0.56
<i>p</i> -Cl	6.00/4.85	6.02/4.15			0.57
m-F	6.02/5.43	5.98/4.75			0.45
m-F	6.03/4.73	6.00/3.56	3.66	99	0.47
m-F	6.00/4.59	6.05/3.42	3.80	98	0.47
m-Cl	6.02/4.48	6.02/3.06			0.43
m-Cl	6.03/4.86	6.05/3.65			0.43
<i>m</i> -Cl	6.05/4.96	6.00/3.78			0.43
	Ph,CD,	<i>p</i> -Xylene			
	6.00/4.74	5.98/3.34	3.67	98	0.403
	6.00/4.67	5.98/3.20	3.61	96	0.400
	5.98/4.82	5.97/3.52	3.50	99	0.415
		0.000			~ 10

• All values in parentheses were determined by the n.m.r. method.

diphenylmethane and p-xylene with SO₂Cl₂ in benzene has been shown ¹⁹ to yield a constant relative reactivity ratio when the concentrations of the hydrocarbon

¹⁸ (a) M. Kosugi, K. Takeuchi, and T. Migita, Bull. Soc. Chem. Japan, 1970, 43, 1535; (b) T. Migita, M. Kosugi, Y. Tanaka, and Y. Nagai, Yuki Gosei Kagaku Kyokai Shi, 1967, 24, 908.
¹⁹ T. O. Teo, unpublished results.

substrates were varied from 0.4 to 2.4M. For the *p*-phenyl substituent the unconsumed diphenylmethane was estimated by the n.m.r. method as the hydrocarbon is too high boiling for the g.l.c. columns used. In the

TABLE 3

Chlorination of XC₆H₄CH₂Ph with t-butyl hypochlorite

	$[XC_{a}H_{4}CH_{2}Ph]/$	[p-Xylene]/	Total	Material	
Subst.	mmol	mmol	α-Cl]/	balance	
х	initial/final	initial/final	mmol	(%)	k/k_{xylene}
¢-Bu⁵	6·01/4·57(4·70) •	5.98/4.58	2.70	99	1.02
∕p-Bu ^t	6.04/4.65(4.60)	6.00/4.62	2.37	96	1.00
∕p-Bu ^t	6.00/4.50(4.51)	5.98/4.51	2.58	97	1.02
⊅-Ph	6.01/(4.90)	5.99/4.59	2.63	101	0.77
⊅-Ph	6.05/(4.83)	6.00/4.60	$2 \cdot 49$	99	0.80
∙ p-Ph	6.03/(4.85)	6.01/4.62	$2 \cdot 22$	97	0.82
H	10.00/8.09(8.15)	9.99/7.57	4.05	99	0.76
н	10.01/7.90(7.81)	10.07/7.35	4 ·21	97	0.74
н	10.00/7.96	10.00/7.40	4.04	97	0.76
⊅- F	6·04/4·38	6.00/3.75	3.32	95	0.69
<i>p</i> -F	6.02/4.41	5.99/3.84	3.16	95	0.70
p-F	6·01/4·41	6.00/3.78			0.67
p-C1	6.04/4.90	6.00/4.07			0.54
p-Cl	6.00/4.89	5.97/4.11			0.55
p-C1	6.05/4.88	6.02/4.15			0.58
m-F	10.01/8.47	10.03/6.87			0·44
m-F	10.02/8.77	9.95/7.92			0.43
m-F	6.02/5.04	6.00/4.10	2.52	97	0.47
m-Cl	6 ·00/5·17(5·10)	5.97/4.19			0.42
m-Cl	6.01/5.13(5.20)	6.03/4.18	2.59	98	0.43
m-Cl	6.00/5.11(5.05)	5.96/4.15	2.34	97	0.44
	Ph.CD.	<i>p</i> -Xylene			
	6.00/4.94	6.02/3.64	3.10	97	0.39
	6.02/4.84	6.01/3.52	3.11	95	0.41
	6.00/5.00	6.03/3.77	2.75	96	0.39

• All values in parentheses were determined by the n.m.r. method.

case of X = p-Bu^t the analysis for the unconsumed diphenylmethane by g.l.c. was checked by the n.m.r. method where the integrated peak area of CH_2 ($\delta ca. 3.8$) was measured against the CH_2 peak area (δ ca. 4.93) of benzyl acetate. The excellent agreement showed that attack on the t-butyl group to be negligible. The estimation of total benzyl chloride by titrimetry for representative experiments indicates a good material balance of 95-101%.

The results of the substituent effects are presented in Table 4, in which the data for homogeneous N-bromosuccinimide (NBS) bromination in CH₂Cl₂ are included. The ρ values are -0.65, -0.66, and -1.06 for SO₂Cl₂, Bu^tOCl, and NBS, respectively, all well correlated by the σ constants, while the corresponding deuterium isotope effects are 1.84, 1.88, and 3.20. The practically identical ρ values and $k_{\rm H}/k_{\rm D}$ effects for the two chlorinating agents provide further supporting evidence for the benzenechlorine atom complex as the principal hydrogenabstracting species in the toluene system. The better correlation with σ than with the σ^+ constants of Brown and Okamoto²⁰ for the NBS bromination of XC₆H₄CH₂Ph confirms the previous reports 11,15 where different methods of analysis were used.

²⁰ H. C. Brown and Y. Okamoto, J. Amer. Chem. Soc., 1958,

80, 4979. ²¹ R. E. Pearson and J. C. Martin, J. Amer. Chem. Soc., 1963, 85, 3142.

Ethylbenzene System.—The relative rates of benzylic chlorination of XC₆H₄Et with SO₂Cl₂ and with Bu^tOCl in benzene at 40° were measured by means of competitive reactions using cyclohexane¹ and diphenylmethane, respectively, as standard substrates. In the SO₂Cl_a system, for X = p-CH₂Cl the reactivity of this compound was measured against diphenylmethane which in turn has a reactivity value $k_{PhEt}/k_{Ph_0OH_1}$ of 0.94 identical to the value found for Bu^tOCl. The results given in Table 5

TABLE 4

Substituent effects on halogenation of $XC_8H_4CH_2Ph$ at 40° and $k_{\rm H}/k_{\rm D}$ values ^a

		k/k,	n
	SO ₂ Cl ₂	Bu ^t OCl	NBS
x	in Ĉ _s Ĥ _s	in C ₆ H ₆	in CH ₂ Cl ₂
¢-PhO			2.44 + 0.10
p-Bu ^t	1.36 ± 0.02	1.35 ± 0.01	1.64 + 0.02
¢-Ph	1.06 ± 0.03	1.06 ± 0.02	
Ή	1.00	1.00	1.00
<i>p</i> -F	0.95 ± 0.02	0.91 ± 0.02	0.77 ± 0.01
p-C1	0.73 ± 0.03	0.74 ± 0.02	0.66 ± 0.01
p-Br			0.64 ± 0.02
m-F	0.62 ± 0.01	0.60 ± 0.02	0.45 ± 0.01
<i>m</i> -Cl	0.58 ± 0.01	0.57 ± 0.01	0.40 ± 0.01
m-Br			0.40 ± 0.01
•		-0.66 + 0.03	
P V	0.999	0.008	-1.00 ± 0.02
, o ⁺	-0.52 ± 0.04	-0.53 ± 0.04	-0.83 ± 0.07
r *	0.972	0.972	0.981
$k_{\rm H}/k_{\rm D}$	1.84 ± 0.02	1.88 ± 0.04	3.20 ± 0.02

1 1

3

^a Corrected for traces of Ph₂CHD. ^b The reactivities of the p-PhO and the p-F compounds were measured against the -But and the m-Cl compounds, respectively. • Measured from p-Bu• and the *m*-Or composition, p-Ph₂CD₂ against *m*-ClC₆H₄•CH₂Ph.

TABLE 5

Chlorination ^a of XC₆H₄Et at 40° in benzene

SO ₂ Cl ₂		ButOCl		
$k_{\alpha}/k_{C_{6}H_{18}}$	k/k_0	$k_{\alpha}/k_{\rm PheCH}$	k/k_0	
0.45 ± 0.02	1.47	1.36 ± 0.04	1.45	
0.86 ± 0.03	1.37 \$	2.57 ± 0.02	ا 1.37 €	
0.66 ± 0.01	ە 1.06	1.98 ± 0.02	ا 1∙05	
0.31 ± 0.01	1.00	0.94 ± 0.01	1.00	
0.27 ± 0.01	0.87	0.82 ± 0.01	0.87	
С	ە 0.78	0.74 ± 0.01	0·79 ^ه	
0.24 ± 0.01	0.77	0.73 ± 0.01	0.78	
0.17 ± 0.01	0.57	0.53 ± 0.01	0.56	
$-0.67\sigma \pm 0$	0.03	+0·65σ +-	0.03	
0.983		0.986		
$-0.58\sigma^+ \pm$	0.04	$+0.59\sigma^{+}\pm$	0.04	
0.960		0.965		
	$SO_{2}C$ $k_{\alpha}/k_{C_{4}H_{13}}$ 0.45 ± 0.02 0.66 ± 0.01 0.31 ± 0.01 0.27 ± 0.01 c 0.24 ± 0.01 0.17 ± 0.01 $-0.67\sigma \pm 0$ 0.983 $-0.58\sigma^{+} \pm$ 0.960	$\begin{array}{c c} & \mathrm{SO_2Cl_2} \\ \hline k_{\alpha}/k_{C_6H_{1.8}} & k/k_0 \\ 0.45 \pm 0.02 & 1.47 \\ 0.86 \pm 0.03 & 1.37 \\ 0.66 \pm 0.01 & 1.06 \\ 0.31 \pm 0.01 & 1.00 \\ 0.27 \pm 0.01 & 0.87 \\ c & 0.78 \\ 0.24 \pm 0.01 & 0.77 \\ 0.17 \pm 0.01 & 0.57 \\ -0.67\sigma \pm 0.03 \\ 0.983 \\ -0.58\sigma^+ \pm 0.04 \\ 0.960 \end{array}$	$\begin{array}{ccccccc} & & & & & & & & & \\ & & & & & & & & & $	

 Average of 3 experiments.
 Statistically corrected. • Measured against Ph₂CH₂, $k_{\alpha}/k_{Ph_3CH_2} = 0.73 \pm 0.01$. • Not included in the correlation by the Hammett equation.

show good correlation by the Hammett equation using σ constants with ρ values of -0.67 ± 0.03 (r 0.983) for SO_2Cl_2 and -0.65 ± 0.03 (r 0.986) for Bu^tOCl. The former value is more negative than the value of -0.49previously reported ¹ in CCl_4 at 40°. The Hammett $\rho\sigma$ treatment of substituent effects in benzylic^{21,22} and allylic²³ brominations has been successfully used in ascertaining the chain-carrying species. The toluene-Cl

²² K. H. Lee, *Tetrahedron*, 1969, **25**, 4357. ²³ J. H. Incremona and J. C. Martin, J. Amer. Chem. Soc., 1970, **92**, 627.

atom π complex has been established ⁵ as the chaincarrying species from the measurements of deuterium isotope effects in the chlorination of $[\alpha^{-2}H]$ toluene with molecular chlorine and with sulphuryl chloride in the absence of a solvent. The near identity of the selectivities in benzylic chlorination with sulphuryl chloride and t-butyl hypochlorite in benzene together with the practically identical deuterium isotope effects provides strong evidence that the mechanism in these two chlorinating agents is one involving the benzene-Cl atom π complex as the chain-carrying species.

It appears that the σ_m and σ_p constants for the CH₂Cl group have not been previously evaluated. In view of the excellent correlation with σ constants found in the chlorination reactions these have been calculated and reported in Table 6; the average values being $\sigma_m = 0.08_6$ and $\sigma_p = 0.168 \pm 0.007$.

TABLE 6

 σ Constants for the chloromethyl group ^a

	SO ₂ Cl ₂ in PhH		Bu ^t OCl in PhH	
System XC ₆ H ₄ Me XC ₆ H ₄ Et XC ₆ H ₄ CH ₂ Cl ^b	σ _m 0·091	σ _p 0·172 0·162 0·181	σ _m 0·081	σ _p 0·169 0·159

Average values $\sigma_m = 0.086$ $\sigma_p = 0.168 \pm 0.007$

⁶ Calculated from the equation $\log (k/k_0) = \rho \sigma$. ^b Based on unpublished data ¹⁹ where $\log (k/k_0) = -0.63\sigma \pm 0.01$ (r 0.997).

EXPERIMENTAL

N.m.r. spectra were recorded with a Hitachi-Perkin-Elmer R20-B instrument using tetramethylsilane as internal standard. G.l.c. analyses were performed on an Aerograph 1520 instrument equipped with a hot wire detector and a disc integrator using 20% SE-30 (5 ft $\times \frac{1}{4}$ in), 20% FFAP (5 ft $\times \frac{1}{8}$ in), 20% QF-1 (5 ft $\times \frac{1}{8}$ in), and 10% QF-1 (5 ft $\times \frac{1}{4}$ in) columns packed with Chromosorb W.

Materials.--The substituted diphenylmethanes were prepared as previously described ¹¹ and the physical constants agreed with the reported values. $[\alpha, \alpha^{-2}H_2]$ Diphenylmethane, b.p. 93° at 1 mmHg, $n_{\rm p}^{23}$ 1.5750, was synthesised in 84% yield by the reduction of benzophenone with lithium tetradeuterioaluminate (deuterium content >99%) and aluminium chloride. Mass spectrometric analyses gave a composition of 96.5% Ph₂CD₂ and 3.5% Ph₂CHD. [α,α -²H₂]Benzyl bromide was prepared ²⁴ from the alcohol obtained by reducing methyl benzoate with LiAlD₄. Reduction of the bromide with $LiAlH_4$ gave $[\alpha, \alpha^{-2}H_2]$ toluene. A sample of $[\alpha, \alpha^{-2}H_2]$ benzyl chloride, n_D^{20} 1.5355, prepared from the above alcohol gave an n.m.r. spectrum with the absence of the triplet at $\delta 4 \cdot 1$ characteristic of $[\alpha^{-2}H]$ benzyl chloride. *m*- and *p*-Methylbenzyl chlorides and p-ethylbenzyl chlorides were synthesised from the corresponding alcohols. Substituted ethylbenzenes were obtained as previously described.²⁵ t-Butyl hypochlorite, b.p. 78° at 760 mmHg, was prepared from the alcohol and sodium hypochlorite. All g.l.c. standards and other materials were purified in the usual manner.^{1, 11, 25} All hydrocarbon substrates used in the competitive reactions were at least 99% pure by g.l.c.

²⁴ R. T. Letsinger and D. F. Pollart, J. Amer. Chem. Soc., 1956, 78, 6079.

Competitive Chlorination of $XC_6H_4Me.-(a)$ With SO_2Cl_2 at 40°. Reactions were performed in benzene solution with XC_6H_4Me , PhMe, and SO_2Cl_2 (each 0.4M) under nitrogen in the usual way ¹ irradiating with a 300 W Phillips sunlamp for 30—50 min to allow 20—25% consumption of the hydrocarbons. After adding the appropriate standard(s) and washing with saturated aqueous Na_2CO_3 the unconsumed hydrocarbons were analysed by g.l.c. which showed no other materials except the two benzyl chlorides. The reactivity of *p*-t-butyltoluene was measured against *p*-xylene, and under these conditions attack on the t-butyl group was negligible.

(b) With Bu^tOCl at 40°. These reactions were run in benzene using the toluenes (each 0.4M) and Bu^tOCl (0.24M) by irradiation with the sunlamp for 1-2 h. The solutions were treated as above and analysed for unconsumed hydrocarbons by g.l.c. which also showed the presence of the two benzyl chlorides. Analyses of the chlorides by g.l.c. in selected experiments indicated good material balance based on the hydrocarbons. The reactivity of p-t-butyltoluene was estimated as above.

Chlorination of $[\alpha, \alpha^{-2}H_2]$ Toluene at 40°.—A known weight of a solution of the deuteriated toluene (1.6M) in benzene was allowed to react with SO₂Cl₂ (40 mol %) in the usual way. The initial and final amount of benzylic C-H in the [2H2]toluene was estimated by the n.m.r. method using the set of peaks centred at § 2.1 relative to known weights of added Ph₂CH₂ (§ 3.75). The reaction of [²H₂]toluene (7.85 mmol) with SO₂Cl₂ (3.2 mmol) gave [a-2H]benzyl chloride (1.49 mmol) and unchanged [2H2]toluene (4.64 mmol). Known weights of the solution were concentrated at 20° and 50 mmHg to remove gaseous products and then refluxed with aniline in CCl_4 for 1.5 h. The aqueous extract gave a total of 3.12 mmol of benzyl chlorides by the Volhard method.¹ The total consumption of benzylic proton was 3.21 mmol. Thus the amount of $[\alpha, \alpha^{-2}H_2]$ benzyl chloride formed was 1.72 mmol, giving a $k_{\rm H}/k_{\rm D}$ value of 2.3.

The reaction of $[{}^{2}H_{2}]$ toluene (8.65 mmol) with Bu^tOCl (3.5 mmol) in benzene (concentrations as above) for 1.75 h gave $[\alpha - {}^{2}H]$ benzyl chloride (0.97 mmol) (by n.m.r.), and unconsumed $[{}^{2}H_{2}]$ toluene (6.40 mmol) by g.l.c. as the acetone formed interfered in the n.m.r. method. The total benzyl chlorides estimated as above was 2.19 mmol. Thus the amount of $[\alpha, \alpha - {}^{2}H_{2}]$ benzyl chloride formed was 1.22 mmol, giving a $k_{\rm H}/k_{\rm D}$ value of 2.5. The estimated error is < 10% in the $k_{\rm H}/k_{\rm D}$ values.

Competitive Chlorination of XC₆H₄CH₂Ph.—(a) With SO₂Cl₂ at 40°. These reactions were carried out in benzene solution with the diphenylmethane, p-xylene, and sulphuryl chloride (each 0.4M) by irradiating for 30-50 min to allow 20-30% consumption of the hydrocarbons. Unconsumed hydrocarbons were analysed by g.l.c. after adding the appropriate standard(s) to aliquot portions of the reaction solution and treating with sodium carbonate as above. In representative experiments benzyl acetate was added to portions of the reaction solution, which was then concentrated at 40° and 50 mmHg, and diluted with a small volume of CCl₄. The unconsumed diphenylmethanes were estimated by multiple integration of the singlet at δ ca. 3.8 relative to the singlet at δ 4.93 for benzyl acetate. The average deviation for the area ratio on 5 integrations is usually $\pm 2\%$. The total benzyl chlorides were estimated by concentrating portions of the reaction solution at 30°

²⁵ E. P. Chang, R. L. Huang, and K. H. Lee, J. Chem. Soc. (B), 1969, 878.

and 50 mmHg and then refluxing for 2.5 h with 80% aqueous ethanol before titrating for the chloride by the Volhard method.¹

(b) With Bu^tOCl at 40°. These reactions were run in benzene solution with p-xylene and the diphenylmethane (each 0·4M) and Bu^tOCl (0·24M) under nitrogen as above for 1—1.75 h. G.l.c. analyses were run as above. The minimum t-butanol-acetone ratio of 30:1 was estimated in selected experiments. Determination of the unconsumed diphenylmethanes by the n.m.r. method were carried out as described and showed good agreement with the g.l.c. values. Estimation of total benzyl chlorides carried out on selected experiments indicated good material balance.

Competitive Reactions of $XC_6H_4CH_2Ph$ with NBS at 40°.— These experiments were run in methylene chloride solution with Ph_2CH_2 and $XC_6H_4CH_2Ph$ (each 0.25M) and NBS (0.20M) in the usual way.¹¹ Unconsumed hydrocarbons were analysed by g.l.c. after adding a weighed amount of reference compound. Based on the NBS used, good material balance ($\geq 95\%$) was found in all cases. The results of triplicate experiments are given in Table 4. The reactivity values for the *p*-PhO and *p*-F compounds were measured against *p*-Bu^t and *m*-Cl compounds, respectively. 0.4M) by irradiating for 30—45 min to allow 20—24% consumption of the hydrocarbons. Cyclohexyl chloride was estimated by g.l.c. The benzyl chlorides were hydrolysed in 80% aqueous ethanol at room temperature and estimated by the Volhard method. For X = p-CH₂Cl, the substrate reactivity was estimated against Ph₂CH₂ as described below.

(b) With Bu^tOCl at 40°. These reactions were performed in the usual manner in benzene solution with XC_6H_4Et and Ph_2CH_2 (each 0.65M) and Bu^tOCl (0.32M) by irradiating for 1-2 h to allow 20-25% consumption of the hydrocarbons. Unconsumed hydrocarbons were analysed by g.l.c. Except for the reactions where X = p-CH₂Cl the total benzyl chlorides were estimated as above giving material balance of 99-101% in all cases based on the initial hydrocarbons. For X = p-Bu^t, the ca. 3% p-EtC₆H₄C(Me₂)CH₂Cl formed was estimated by the n.m.r. method using the singlet at δ ca. 3.5, and the appropriate correction was made for the relative reactivity value.

[2/1801 Received, 31st July, 1972]